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ABSTRACT

The rapid expansion of contemporary computers is expected to enable operational integrations of global

models of the atmosphere at resolutions close to 1 km, using tens of thousands of processors in the foreseeable

future. Consequently, the algorithmic approach to global modeling of the atmosphere will need to change in

order to better adjust to the new computing environment. One simple and convenient solution is to use low-

order finite-differencing models, which generally require only local exchange of messages between processing

elements, and thus aremore compatible with the new computing environment. Thesemodels have already been

tested with physics and are well established at high resolutions over regional domains. A global nonhydrostatic

model, the Nonhydrostatic Multiscale Model on the B grid (NMMB), developed at the Environmental Mod-

eling Center of the National Centers for Environmental Prediction during the first decade of this century is one

such model. A drawback of the original version of global NMMB is that it is discretized on the standard

longitude–latitude grid and requires application of Fourier polar filtering, which is relatively inefficient on

massively parallel computers. This paper describes a reformulation of the NMMB on the grid geometry of a

novel cubed sphere featuring a uniform Jacobian of the horizontal mapping, which provides a uniform reso-

lution close to that of the equiangular gnomonic cubed sphere, but with a smooth transition of coordinates

across the edges. The modeling approach and encountered challenges are discussed and several results are

shown that demonstrate the viability of the approach.

1. Introduction

This paper describes a cubed-sphere version of a global,

nonhydrostatic model of the atmosphere, the Non-

hydrostaticMultiscaleModel on theB grid (NMMB) (e.g.,

Janjić et al. 2001; Janjić 2003; Janjić and Gall 2012), de-

veloped at the Environmental Modeling Center (EMC)

of the National Centers for Environmental Prediction

(NCEP). The NMMBwas developed in both regional and

global modes, the latter using the standard longitude–

latitude (or geographical) grid, with polar filtering of

Arakawa and Lamb (1977) as a technique to deal with the

linear stability restrictions imposed by the convergence of

meridional lines around the poles. In the case of the

NMMB, the polar filter is acting only on time tendencies

instead of on full atmospheric fields or their gradients,

which eliminates some of the shortcomings of that

approach (e.g., Takacs and Balgovind 1983; Purser 1988).

However, reduced efficiency, caused by the global nature

of Fourier transformations, remains as an unavoidable

consequence of the large number of interprocessor com-

munications that will only escalate on the future machines

expected to incorporate tens of thousands of processors.

This situation was perhaps best characterized by Randall

et al. (1998), who described close zonal spacing of grid

points near the poles as an ‘‘excessive spatial resolution,

which demands increased and not necessarily useful

computational resources,’’ (p. 202) and considered that

filters will ‘‘become prohibitively expensive at high reso-

lutions, especially onmodern parallel computers’’ (p. 202).

Thus, the primary motivation of this project was to

develop a version of the NMMB that will be free of polar

filtering. The cubed sphere was selected because of its

remarkable symmetry and the ability to naturally organize

parallel computation.

The cubed sphere was suggested for application

in numerical modeling by Sadourny (1972), as a
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gnomonic cube (Fig. 1, top left) derived by a central

projection from the sphere to a concentric cube. An

‘‘equiangular’’ version provides one of the most uni-

form mappings of the sphere possible, among those

based on rectangular grid meshes, while the ‘‘equi-

distant’’ version results in somewhat increased reso-

lution close to edges. The main problem with all

versions of the gnomonic cube, regardless of the way

their two coordinates are parameterized, is an angular

discontinuity of the grid lines across the edges, which,

together with eight singular corners, creates numeri-

cal problems, especially for application of Eulerian

finite-differencing methods.

The papers of Ronchi et al. (1996), Ran�cić et al.

(1996), and McGregor (1996), announced the resur-

rection of interest in the application of this geometry.

Ronchi et al. (1996) suggested a new, grid over-

lapping approach on the gnomonic cube, while

Ran�cić et al. (1996) and McGregor (1996) suggested

numerical generation of coordinates over the cubed

sphere, and designed a ‘‘conformal spherical cube’’

(i.e., such a modification of the gnomonic cube where

the coordinate lines create conformal grid boxes ex-

cept at the corners) (Fig. 1, top right). Such a con-

formal cubed sphere has very small grid boxes in the

immediate vicinity of the corners, imposing too

strict a linear stability condition. In the next re-

finement, Purser and Ran�cić (1998, hereafter PR98)

suggested a ‘‘smoothed’’ (SM) cubed sphere (Fig. 1,

bottom left), where the conformality requirement is

relaxed while keeping a smooth transition of co-

ordinates across edges.

Within this project we apply a novel cubed sphere

with uniform Jacobians (UJ), shown in Fig. 1 (bottom

right). The UJ cubed sphere supports continuity of de-

rivatives of any order across the edges while having a

more homogeneous resolution, which guarantees a suf-

ficiently large time step.

The NMMB is a second-order, finite-differencing

model, with an optional application of a fourth-order

scheme for horizontal advection of tracers and mo-

mentum. It is an Eulerian model (though we plan to

introduce a semi-Lagrangian treatment of tracers)

with a strict enforcement of integral conservation

FIG. 1. (top left) Gnomonic cube, (top right) conformal cube, (bottom left) smooth (SM) cube,

and (bottom right) UJ cube.
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constraints and a highly efficient handling of non-

hydrostatic effects inherited from the regional NMMB.

The next generation of numerical models will be run-

ning on global resolutions close to 1 km using tens of

thousands of processors. In that situation, the simplic-

ity, computational speed, and scalability of the nu-

merical formulation become the primary desiderata, all

of which recommends the NMMB-UJ, that is, the

NMMB running in the UJ version of the cubed sphere,

as a good candidate. The regional version of the

NMMB has physics that is well tuned for high resolu-

tions in operational runs over the contiguous U.S. do-

main (United States and surrounding seas) at a

resolution of 4 km, which is an additional argument for

considering an extension of that model with global

coverage.

The NMMB-UJ was developed within the High Im-

pact Weather Prediction Project (HIWPP), whose goal

was to ‘‘improve time-zero to two-week weather pre-

diction of Nature’s most dangerous storms’’ (http://

hiwpp.noaa.gov/).

In section 2 we give a brief introduction of the general

curvilinear formalism. The derivation of the UJ cubed

sphere with the analysis of its properties is described in

section 3. In section 4 we present the analytical version

of the model equations, which is followed by a de-

scription of their horizontal discretization in a general

curvilinear coordinate frame in section 5. The demon-

strations of model performance, including the compu-

tational aspects, two of the recommended HIWPP test

cases, and an example of integration with full physics,

are given in section 6. The paper concludes with dis-

cussion of the derived results. Conservation of dry mass

and kinetic energy by the horizontal advection is dem-

onstrated in the appendix.

2. Curvilinear formalism

In the case of a cubed sphere we deal with general

curvilinear coordinates, and we here briefly review

some of the related definitions. More details can be

found, for example, in Ran�cić et al. (1996) and Zhang

and Ran�cić (2007).

Using units of Earth radius for simplicity, let us denote

with Xk 5 (X , Y, Z) the components of the position

vectorX in a Cartesian absolute frame with the origin at

the center of Earth. We express components of a wind

vector V in this frame as _Xk 5 ( _X, _Y, _Z), where (
.
)

denotes the time derivative.

Let a pair xi 5 (x, y) define general curvilinear co-

ordinates on the surface of a sphere, with the basis

vectors J1 and J2 in the directions tangential to co-

ordinate lines x and y, respectively, defined as

J
1
5
›X

›x
5

�
›X

›x
,
›Y

›x
,
›Z

›x

�T

,

J
2
5
›X

›y
5

�
›X

›y
,
›Y

›y
,
›Z

›y

�T

, (1)

which we may conveniently combine into the single

33 2 Jacobian matrix:

J5 [J
1
, J

2
]. (2)

Covariantwind components, ui 5 (u, y), are defined by a

scalar product of the absolute wind vector and the basis

vectors of the curvilinear system:�
u

y

�
5

�
J
1
�V

J
2
�V

�
[ JTV . (3)

In our model, covariant winds are historic variables.

Contravariant winds, ui 5 (~u, ~y), are defined as time

derivatives of the curvilinear coordinates:

(~u, ~y)5 ( _x, _y). (4)

The covariant metric tensor in curvilinear coordinates

on the sphere is defined as

G5 JTJ[

�
q
11

q
12

q
21

q
22

�
, (5)

where

q
ij
[ J

i
� J

j
, i, j 2 f1, 2g. (6)

We denote by G the absolute scalar Jacobian of the

transformation, defined as,

G5 [det(G)]1/2 5 (J
1
3 J

2
) � n , (7)

where n[X/jXj is the unit normal vector on the surface

of Earth.

The contravariant winds are related to the covariant

winds via �
~u

~y

�
5G21

�
u

y

�
, (8)

or, in Einstein tensor notation:

ui 5 qiju
j
, (9)

where the contravariant metric tensor has components

written as

G21 5

�
q11 q12

q21 q22

�
. (10)
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For the discussion that follows it is important to recall

definitions of basic horizontal vector operators in the

curvilinear coordinates: divergence D, and the gradient

and the Laplacian of a scalar A, respectively, as

D5
1

G

�
›~uG

›x
1

›~yG

›y

�
, (11)

=A5

�
›A

›x
,
›A

›y

�T

, and (12)

=2A5
1

G

�
›

›x

�
G

�
q11›A

›x
1 q12›A

›y

��
1

›

›y

�
G

�
q21›A

›x
1 q22›A

›y

���
. (13)

3. Mappings with the UJ property

The principal defect of the conformal cubed sphere

introduced by Ran�cić et al. (1996) andMcGregor (1996)

was the exceptionally small grid spacing around each

corner singularity, so a remedial generalization of that

mapping was proposed in PR98. There, we considered

the implications of the solution minimizing the varia-

tional principle for a mapping covering the unit sphere,

L 5
1

2

ð ð
[(jJ

1
j2 1 jJ

2
j2)1 aG2

1L(jXj2 2 1)] dx dy , (14)

whose solution was shown to revert to the conformal

case in the special limit of the Jacobian-smoothing term,

aG2, vanishing, but to generate a new and more equi-

tably resolving family of mappings when the constant

‘‘smoothing coefficient,’’ a, was prescribed to be strictly

positive. It is this ‘‘smoothed cubed-sphere’’ (SM) fam-

ily that serves as the main inspiration for the present

extension, actually the limiting case, a/‘, which led to

our uniform Jacobian (UJ) grid. It is, therefore, worth

briefly reviewing the principles that underlie this varia-

tional construction, its relationship to other cubed-

sphere geometries, and the manner in which a version

of the UJ cubed sphere emerges from it.

Since we are interested in the minimum value of

the integral in (14), any constant multiple of the scalar

Jacobian, G, of the mapping can be added to the in-

tegrand without changing the solution, owing to the in-

tegral of G being 4p regardless of the details of the

continuous mapping. Using this property the first two

terms of the integrand can be replaced by the square of

the norm of the purely anisotropic (trace free and sym-

metric) part of a kind of ‘‘strain tensor’’ of the mapping,

as one can verify by considering a local Cartesian tangent

coordinate frame, (xt, yt), and observing then that, with

respect to this frame at the tangent point

G5
›x

t

›x

›y
t

›y
2

›y
t

›x

›x
t

›y
. (15)

Our anisotropic symmetric strain tensor e at the tangent

point can be defined as

e5

�
e
11

e
12

e
12

2e
11

�
, (16)

with

e
11
5

1

2

�
›x

t

›x
2

›y
t

›y

�
,

e
12
5

1

2

�
›y

t

›x
1

›x
t

›y

�
, (17)

such that this tensor’s squared norm,

e2 [ kek2 5 2(e211 1 e212) , (18)

can be expanded to show that

1

2
(jJ

1
j2 1 jJ

2
j2)5 1

2

"�
›x

t

›x

�2

1

�
›x

t

›y

�2

1

�
›y

t

›x

�2

1

�
›y

t

›y

�2
#
5 e2 1G . (19)

Thus, we can legitimately interpret the variational

principle of PR98 [our (14)] defining the smooth poly-

hedral mapping as being modeled on a continuous

elasticity model in which a part of the elastic energy (the

integral of e2) derives from the anisotropic component

of deformation of the medium and the other part of the

elastic energy (the integral of 1/2aG2) derives from the

horizontal compression or expansion of the two-

dimensional medium in which the map coordinates

(x, y) are imagined to be materially embedded. We

compare this construction method with the conceptually

similar ‘‘spring dynamics’’ method proposed by Tomita

et al. (2001, 2002) which is also motivated by a principle

of minimizing elastic energy, but in that case, the energy

of a discrete collection of springs forming the compu-

tational lattice elements. The coefficient a denotes the

ratio of the two kinds of elastic modulus; when a5 0, we

showed in PR98 that the resulting minimum-energy

solutions (they are not unique) would be of the confor-

mal kind with singular Jacobians at the corner singu-

larities of the mapping. For finite a, where the

departures from uniformity of the Jacobian G are pe-

nalized, we were able to get smooth and more uniform

mappings. The other extreme of the variational principle
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of PR98 occurs when we consider the limiting case where

a/‘. This limit is equivalent to replacing the second

quadratic integrand term with a new Lagrange multiplier

constraint to enforce the exact uniformity of the Jacobian

to its average value G0:

L 5
1

2

ðð�
(jJ

1
j2 1 jJ

2
j2)2 2

G
o

K(G2G
0
)

1L(jXj2 2 1)

�
dx dy . (20)

This is a variational definition of a smooth uniform-

Jacobian (UJ) polyhedral mapping. In the elastic anal-

ogy it corresponds to a horizontally incompressible

elastic membrane whose energy derives entirely from

the integrated squared norm of our traceless strain

tensor. The Euler–Lagrange equations (Lovelock and

Rund 1975) corresponding to Eqs. (2) and (3) of PR98

are obtained by considering independent variations with

respect to the components of X, the multiplier field K,

and the multiplier field L. We find that

›2X

›x2
1

›2X

›y2
5=K1LX , (21)

G5G
o
, (22)

jXj5 1, (23)

where the gradient acting on K is the embedded Car-

tesian two-dimensional tangent-space operator. Thus, in

the elastostatic analogy,K serves as a kindof 2D ‘‘pressure’’

needed to balance the horizontal ‘‘elastic’’ forces of the first

termof (20) in order tomaintain the constraint of a uniform

Jacobian, while the vertical force term containingL serves

to balance the radial elastic force term to keep the

mapping solution on the surface of the unit sphere.

An approximation to the UJ-cube mapping defined

by this new variational principle is obtained by a

splitting of the contributions as follows. First, we ignore

the ‘‘K’’ constraint and simply obtain the perfectly

smooth (except for eight corner singularities) confor-

mal cubic intermediate solution [see Ran�cić et al.

(1996), for a description of the method by which a

conformal cubic mapping is efficiently and accurately

constructed]; then we ‘‘switch on’’ the uniform Jacobian

constraint by seeking the most direct irrotational

perturbation of the mapping that brings it into con-

sistency with the uniform Jacobian constraint. Just as

the most direct force opposing the elasticity terms in

the final uniform Jacobian state is known to be a gra-

dient of a scalar (K), the most direct projection onto

the abstract space of uniform Jacobian mappings from

any initial nonuniform-Jacobian mapping (such as our

conformal intermediate state) is via a pure gradient

motion. The two-stage construction defined in Purser

and Ran�cić (2011) shows how such an irrotational po-

sition perturbation is obtained, using a velocity po-

tential integrated over a pseudo-time to ensure that the

logarithm of the Jacobian tends directly to perfect

uniformity.

In the next several paragraphs we will compare theUJ

cubed sphere with the SM and equiangular gnomonic

cubed spheres.

The SM cubed sphere was derived by smoothing of

the conformal cubed sphere, controlled by the

smoothing coefficient, a, that could take values from

0 (conformal cube) to a practical limit of about 100. The

SM cubed sphere provided a better ratio between the

minimum and the maximum grid distance (hereafter

‘‘homogeneity’’) than the conformal cubed sphere, but

also extended the area around the corners where the

coordinate lines were not orthogonal. Homogeneity of

the SM cubed sphere, as a function of smoothing co-

efficient a, is shown in Fig. 2a, calculated for a resolu-

tion of 963 45 384 grid boxes around the equator

(roughly 104 km). Homogeneity of the UJ cubed

sphere for a resolution of 104 km was found to be about

0.7074, and is also plotted in Fig. 2a, along with the

homogeneity of the equiangular gnomonic cubed

sphere (0.7129). The dependence of homogeneity with

resolution on the UJ and gnomonic cubed spheres is

shown in Fig. 2b. The UJ has nearly constant homo-

geneity, which is approaching to that of the gnomonic

with increase of resolution, but without angular dis-

continuity across the edges. Note that if the homoge-

neity was expressed using the surface area of grid boxes

instead of their edges, then it would be equal to 1 on the

UJ cubed sphere.

Figure 3 shows respectively the orthogonality, the

angular skewness, and the aspect ratio (e.g., Weller

2014), calculated for SM, UJ, and gnomonic cubed

spheres. The ‘‘orthogonality’’ is measured in the centers

of grid boxes and represents the departure of in-

tersection angle between x and y coordinates from 908.
The ‘‘angular skewness’’ of a grid box is defined as a

normalized maximal departure from 908 of all angles

within the box, that is,

max

�
u
max

2 90

90
,
902 u

min

90

�
. (24)

The ‘‘aspect ratio’’ is defined as a ratio of the mini-

mum to the maximum gridbox edge. We calculate these

measures in the map space, and in order to avoid repe-

tition, present here only the top-right quarter of the cube
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face, since the other quarters are symmetrical. The

smoothing coefficient a of the SM cubed sphere was 20.

The cubed spheres have resolution of 1603 160 grid

boxes on each face.

From Fig. 3 it follows that the UJ has the best or-

thogonality and skewness (closer to zero in the larger

area) especially in comparison with the gnomonic cubed

sphere. However, surprisingly, the SM cubed sphere has

the best aspect ratio (closer to 1), and the UJ cubed

sphere behaves similarly to the gnomonic, though with

somewhat tighter area where the aspect ratio is close

to 1.

4. Continuous equations

The NMMB is a nonhydrostatic model of the at-

mosphere, developed and described in Janjić et al.

(2001), Janjić (2003), and elsewhere. It is formulated

using a hydrostatic pressure, mass-coordinate-based

system, introduced by Laprise (1992). The longitude–

latitude version of the model is described in detail in

Janjić and Gall (2012), which we loosely follow in this

section.

Hydrostatic pressurep at some geopotential levelF is

defined as the weight of the column of air, that is,

p5p
T
1

ðFT

F

r dF , (25)

where pT and FT denotes values at the top of model’s

atmosphere.

The model uses the hybrid coordinate system sug-

gested by Eckermann (2009), where hydrostatic pres-

sure is calculated from

p5p
T
1s

1
(h)P1s

2
(h)(p

S
2p

T
) . (26)

The hybrid system (26) is a generalized version of the

hydrostatic sigma system, with an extra term, s1P; s1 is

equal to 0 at the top and bottom of the atmosphere, and

P is a conveniently selected constant. The term s2

takes a value 0 at the top and 1 at the bottom of the

model’s atmosphere, where hydrostatic pressure is pS.

From the definition of hydrostatic pressure, (25)

follows a ‘‘hypsometric equation’’ below, which is used

to formulate hydrostatic pressure-based equations for

the nonhydrostatic atmosphere:

›F

›p
52

RT

p
. (27)

Note that here p is true pressure. Assuming that both

hydrostatic pressure and geopotential are functions of

the new hybrid coordinate h, the above equationmay be

rewritten as

›F

›h
52

RT

p
m , (28)

where ‘‘hydrostatic mass’’ m is defined by

m5
›p

›h
. (29)

FIG. 2. (a) Homogeneity of SM, UJ, and gnomonic cubed spheres calculated for a resolution of 104 km. The UJ

and gnomonic have constant homogeneity, and for SM it is a function of a smoothing coefficient a. (b)Homogeneity

of gnomonic and UJ cubed spheres calculated for several increasing resolutions starting from 104 km.
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Prognostic equations to solve for momentum (u and y),

temperature (T), and hydrostatic mass (m) are,

respectively,

›u

›t
52

�
~u
›V

›x
1 ~y

›V

›y

�
� J

1

2 _hm
›u

›p
2 (11 «)

›F

›x
2

RT

p

›p

›x
, (30)

›y

›t
52

�
~u
›V

›x
1 ~y

›V

›y

�
� J

2

2 _hm
›y

›p
2 (11 «)

›F

›y
2
RT

p

›p

›y
, (31)

›T

›t
52

�
~u
›T

›x
1 ~y

›T

›y

�
2 _hm

›T

›p
1

1

c
p

RT

p
v , (32)

›m

›t
52

1

G

�
›

›x
(~uGm)1

›

›y
(~yGm)

�
2

›

›h
( _hm) . (33)

We express the total derivatives using the formu-

lation introduced by Kasahara (1974) and adjusted

here for the curvilinear framework; cp is specific heat

at constant pressure, R is the gas constant of dry air,

and T is temperature.

In addition, a nonhydrostatic model needs to de-

scribe the time change of vertical wind in geometrical

heightw and the true pressure p, which in the NMMB is

solved in a unique, efficient diagnostic manner that

avoids overspecification of variables, described in de-

tail in Janjić et al. (2001). We here only give a brief

recapitulation of this procedure.

First, observe that from (28) one can calculate geo-

potential as

FIG. 3. Orthogonality (8), angular skewness, and aspect ratio for SM, UJ, and equiangular gnomonic cubed spheres, shown in the top-right

quarter of a cube’s face expressed in the map space.
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F5F
S
2

ðh
hS

RT

p
mdh . (34)

Second, from the definition of geopotential, one can

calculate the vertical wind w as

w[
dz

dt
5

1

g

�
›F

›t
1 ~u

›F

›x
1 ~y

›F

›y
1 _hm

›F

›p

�
. (35)

Third, once w is found, a similar procedure can be

applied to update vertical acceleration dw/dt:

dw

dt
5

›w

›t
1 ~u

›w

›x
1 ~y

›w

›y
1 _hm

›w

›p
. (36)

To explain the calculation of the true pressure, recall

that the vertical equation of motion is

dw

dt
52

RT

p

›p

›z
2 g

52g

�
RT

p

›p

›F
1 1

�
52g

�
RT

p

›p

›p

›p

›F
1 1

�
. (37)

Finally, by applying (27) to the term ›p/›F in the last

expression, vertical acceleration becomes

dw

dt
5 g

�
›p

›p
2 1

�
. (38)

Using this equation, Janjić et al. (2001) expressed the

increment of true pressure relative to hydrostatic as

›p

›p
5 11 « , (39)

where « denotes vertical acceleration normalizedby gravity:

«5
1

g

dw

dt
. (40)

Note that once vertical acceleration is found from (34),

(35), and (36), pressure can be diagnosed from (39) as

p5

ðh
0

(11 «)mdh . (41)

The v in the thermodynamic equation is defined as

v5
›p

›t
2 (11 «)

›p

›t
1

�
~u
›p

›x
1 ~y

›p

›y

�
2
(11 «)

G

ðh
0

�
›G~um

›x
1

›G~ym

›y

�
dh . (42)

The hydrostatic continuity equation is used to calculate

the local timechangeofhydrostatic pressure and todiagnose

the vertical mass flux ( _hm). As can be verified by inspec-

tion, the nonhydrostatic system reduces to the hydrostatic

one when the nonhydrostatic correction factor « is equal

to zero.

In the following section we describe discretization

of the dynamic equations discussed in this section, with

the emphasis on those elements that are unique to the

geometry of the cubed sphere, such as spatial differ-

encing and treatment of the corners, while leaving out

details that can be found elsewhere, for example, in

Janjić and Gall (2012).

5. Discrete equations

The NMMB-UJ uses the Arakawa B grid (Fig. 4) with

h points that carry scalar variables and coincide with the

horizontal position of vertical mass fluxes, arranged along

edges of the cube, which was suggested in Ran�cić et al.

(1996) and applied in the global Eta model of Zhang and

Ran�cić (2007). The normal (x, y) and the diagonal (x0, y0)
directions on the B grid, which will be used in the de-

scriptions that follow, are shown in Fig. 4. Themodel uses

the Lorenz (1960) arrangement of variables in the verti-

cal, where both temperature and winds are placed at the

middle of vertical layers and vertical mass fluxes are at

interfaces. The true pressure p and geopotential F are

also located at interfaces, while the vertical wind w re-

sides in the middle of layers located at h points.

To avoid double calculation along common edges, which

may lead to separation of solutions along edges and affect

scalability, each face of the cubed sphere was assigned only

two edges along which we perform calculation and the

values at two other edges are provided through message

exchange. Two of the cube corners in this way could be left

out of the calculation unless care is taken to assign them to

one of the faces to which they belong.

Alternatively, one can organize the computation so

that each face includes all of its edges and corners in the

FIG. 4. B grid and definition of axes.
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calculation. This increases the computational load, but

reduces the overall amount of communications, and

simplifies formulation of communication subroutines.

We tested both methods, but the advantages of one or

the other were not conclusive.

Following logistics from the NMMB on the longitude–

latitude grid, the prognostic equations are advanced in

time using second-order Adams–Bashforth differencing,

with a few exceptions: the adjustment terms are solved

using the forward–backward scheme and the vertical ad-

vections and terms responsible for vertical propagation of

sound waves are treated implicitly. Implicit treatment of

vertical advection allows the vertical grid spacing, espe-

cially close to the ground, to be kept sufficiently fine,

without the need to reduce the time step which would

adversely affect the overall efficiency.

The focus here is on horizontal discretization, where the

longitude–latitude orthogonal coordinate frame is replaced

by the general curvilinear formulation applied on the cubed

sphere. Vertical space differencing remains the same as in

the original NMMB described, along with more details of

the time-differencing strategy in Janjić and Gall (2012).

In this paper we use the following notation for finite

differencing:

d A difference between two successive values of a vari-

able A in the direction of a coordinate axis s will be

denoted as DsA. We will mainly use this notation to

denote vertical differencing.
d An averaging of two successive values of a variableA in

the direction of a coordinate axis swill be denoted byAs.

d A discrete gradient of the variableA in the direction of

coordinate axis s will be denoted as dsA[DA/Ds,
where Ds is the increment of coordinate s in map space.

a. Adjustment terms

We define a finite-difference approximation of the

horizontal part of the continuity equation (33) on the B

grid from Fig. 4 as

›m

›t
52

1

G

�
2

3
(d

x
U1 d

y
V)1

1

3
(d

x0U
0 1 d

y0V
0)
�
. (43)

Normal fluxes (U, V) in the direction of axes (x, y) in

Fig. 4, are defined as

U5mx~uG
y
,

V5my~yG
x
. (44)

Diagonal fluxes (U 0, V 0) in the direction of axes (x0, y0)
in Fig. 4, are defined as

U 0 5mx0
ffiffiffi
2

p

2
(~u1 ~y)G,

V 0 5my0
ffiffiffi
2

p

2
(2~u1 ~y)G . (45)

Here

m[D
h
p , (46)

where p is hydrostatic pressure and h is the vertical

coordinate as before.

The pressure gradient force from (30) and (31) is ap-

proximated as

�
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›t

�
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mxy

"
(11 «)

*
2

3
mxd
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Fh

y

1
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3
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h 2my0d
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+
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x
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1
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ffiffiffi
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(amx0d

x0p
h 2amy0d

y0p
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+#
, (47)
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myd
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Fh

x

1
1

3

ffiffiffi
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h 1my0d

y0F
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ffiffiffi
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x0p
h 1amy0d
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. (48)

Here, a, proportional to specific volume, is defined as

a5
RT

ph
. (49)

A consistent hydrostatic horizontal part of the energy

transformation va term can be expressed as

�
›T

›t

�
vha

5
1

mG

2

3
haxUd

x
ph

x
1ayVd

y
ph

yi
�

1
1

3
hax0Ud

x0p
h
x0
1ay0Vd

y0p
h
y0 i
�
. (50)

The technique for preventing separation of gravitywaves

on the elementary C grids of Mesinger (1973) and Janjić
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(1974) is turned off at the corners of the cubed sphere and

modified in their vicinity to ensure mass conservation.

By ignoring terms associated with the third wind

component, the Coriolis force is defined as�
›u

›t

�
cor

5 2V~yJ
xy
(X ,Y),�

›y

›t

�
cor

522V~uJ
xy
(X,Y), (51)

where V is the angular speed of Earth’s rotation and J
denotes Jacobian of the absolute coordinates with re-

spect to the map space.

b. Nonlinear momentum advection scheme

The nonlinear momentum advection scheme is defined

using the ‘‘vector projected method’’ of Ran�cić et al.

(2008). Instead of the Janjić (1984) nonlinear momentum

scheme, which conserves aC-grid vorticity (and enstrophy)

on the semistaggered grid, we use the Arakawa (1972)

scheme, which conserves a finite-difference analog of

vorticity defined as an average of C- and E-grid vorticities.

This represents one of two major departures, in this case a

slight degradation, in comparison to the original NMMB

model, because the Janjić (1984) momentum advection

scheme better restricts flow of nonlinear energy toward the

smallest resolvable scales. Still, the Arakawa (1972)

scheme does not produce spurious nonlinear interactions

between short and long scales, and is much easier to apply

in a general curvilinear formulation, especially on the grid

topology of the cubed sphere, because of its fully isotropic

formulation. In addition, in comparison with the B-grid

version of the Janjić (1984) scheme, the Arakawa (1972)

scheme represents a more efficient choice.

In vector form, the continuous horizontal momentum

terms are defined as�
›V

›t

�
adv

52

�
~u
›V

›x
1 ~y

›V

›y

�
. (52)

Discretizing this equation in the spirit of Arakawa

(1966) conservation principles and using both normal

and diagonal directions, results in�
›V

›t

�
adv

52
1

hGxy

�
2

3

	
Ud

x
V

x
1 V d

y
V

y



1
1

3

	
U 0d

x0V
x0
1V 0d

y0V
y0
�

. (53)

The fluxes in these expressions are defined as

U5Uxy, V 5Vxy , (54)

U 0 5U 0xy, V 0 5V 0xy , (55)

where U, V, U 0, and V 0 are defined in (44) and (45).

In Ran�cić et al. (2008), Eq. (53) was projected onto

normal directions of map space in order to find tenden-

cies of covariant winds. In this paper, we project this

vector equation onto coordinates of the absolute co-

ordinate system, (X, Y, Z), and solve for time tendencies

of the absolute winds, ( _X, _Y, _Z), keeping the form of the

scheme identical to (53) for each of these components.

Once the time tendencies of wind components in the

absolute frame are found, we calculate tendencies of the

covariant winds, our historic variables, from�
›u

›t

�
adv

5
›V

›t
� J

1
,�

›y

›t

�
adv

5
›V

›t
� J

2
. (56)

This method involves solving three instead of two

equations, but is much simpler to apply than the original

vector projected method. Some minor modifications of

the scheme are applied close to the corners of the cube in

order to preserve conservation of kinetic energy, which

is discussed in the appendix.

The fourth-order version of the horizontal advection

schemes is also included in NMMB-UJ as an option,

following Janjić et al. (2011).

c. Horizontal diffusion

Nonlinear horizontal diffusion of a variableAmay be

expressed as �
›A

›t

�
diff

5= � (K=A) . (57)

Following Smagorinsky (1963), the coefficient of the

horizontal diffusion can be expressed as

K5C
D
x , (58)

where CD is a Smagorinsky constant and x represents a

scalar norm of the horizontal trace-free flow de-

formation tensor x (analogous to the anisotropic strain

in section 2). An exact covariant expression for the

scalar x in general curvilinear coordinates is given, in

tensor notation, by

x5

�
1

2
x
ij
x
kl
qikqjl

�1/2
, (59)

where the covariant tensor xij is defined as

x
ij
5 u

ijj 1u
jji 2 q

ij
D . (60)

Here,D is the horizontal divergence defined by (11); qij

and qij are the covariant and contravariant metric
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tensors given by (6) and (10), respectively; and uij j de-
notes the ‘‘covariant derivative’’ of ui 5 (u, y) with re-

spect to xj 5 (x, y) (for general definitions of covariant

differentiation, see, e.g., Synge and Schild 1949). This

is a tensor that, in our case, could be written using the

pair of Jacobian vectors Ji:

u
ijj 5

›u
i

›xj
2 ukJ

k
�
›J

j

›xi
. (61)

If x were evaluated in local Cartesian coordinates, then,

x5

�
x
11

x
12

x
12

2x
11

�
, (62)

and

x5 [x2
11 1 x2

12]
1/2 , (63)

but an adequate approximation to the pair of arguments

in (63), which we have used to define x in our experi-

ments, takes

x
11
’

1

G

�
›G~u

›x
2

›G~y

›y

�
,

x
12
’

1

G

�
›y

›x
1

›u

›y

�
. (64)

The diffusion in our model on the B grid is discretized

as

= � (K=A)5
C

D

G
[d

x
(xG~u

A
)1 d

y
(xG~y

A
)] , (65)

where in the case that A is a scalar variable:

xG~u
A
5 (Gq11)xxd

x
A1 (Gq12)xyd

y
A

xy
,

xG~y
A
5 (Gq21)xxd

x
A

xy
1 (Gq22)xyd

y
A . (66)

In the case of momentum, diffusion is applied to each of

the absolute wind components _Xk discretized as

xG~u _Xk
5 (Gq11)xyd

x
_X
k
1 (Gq12)xxd

y
_X
k

xy

,

xG~y _Xk
5 (Gq21)xyd

x
_X
k

xy

1 (Gq22)xxd
y
_X
k
. (67)

Metrics Gq11, Gq12, etc., in these formulas are defined

on the corresponding cross sections between h and V

points. (On theUJ cubed sphere, the JacobianG is equal

everywhere except at the corner points that carry sca-

lars. Thus, in principle, G could be ignored in all ex-

pressions for diffusion of winds. However, we still keep

it here everywhere for consistency.) Once the diffusion

of each of the absolute wind components is found, the

tendencies of covariant winds are updated by trans-

forming diffusion of absolute winds back to covariant

winds: �
›u

›t

�
diff

5= � [(K=V) � J
1
],�

›y

›t

�
diff

5= � [(K=V) � J
2
] . (68)

If we need to use a linear instead of nonlinear diffu-

sion, as in an idealized convection supercell test case

shown in the next section, then x is set to 1, and constant

CD is chosen differently than in the case of nonlinear

diffusion.

In principle, the diagonal directions also should have

been included in the definition of horizontal diffusion

for consistency with the rest of the dynamics. However,

this would increase the expense of calculation without

clear benefit for performance and we postpone that

for now.

d. Advection of tracers

Horizontal advection of a tracer c defined at scalar

points can be discretized as

›c

›t
52

1

mG

�
2

3
(Ud

x
c
x
1Vd

y
c
y
)

1
1

3
(U 0d

x0c
x0
1V 0d

y0c
y0
)

�
. (69)

We demonstrate in the appendix global conservation

of both the first and second moments of scalar c.

Conservation of the second moment allows us, just as in

the original NMMB, to actually advect a square root of

the scalar,
ffiffiffi
c

p
, which translates to its positive defi-

niteness. However, the scheme does not have a mech-

anism to prevent over- and undershoots, and therefore

we apply an a posteriori procedure in order to preserve

monotonicity of the solution.

Since we plan to introduce a semi-Lagrangian

scheme for all passive tracers, we supplied the

NMMB-UJ with a state-of-the-art approach for

monotonization and a consequent restoration of the

global first moment of each advected field, somewhat

more advanced than the one in the original NMMB.

After application of horizontal and vertical advection

schemes to a tracer c, while the first moment of tracer is

conserved, there are no guarantees that unrealistic

overshoots/undershoots, known as Gibbs oscillations,

will not appear. Therefore, the first intervention con-

sists of applying the filter that will remove these
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unrealistic shortwave oscillations, to which end we

follow the method proposed by Sun et al. (1996). In the

second step, the conservation is restored following the

method described in Sun and Sun (2004).

e. Effect of curvature of coordinates around corners

As a consequence of an increased curvature of the

coordinates, we found that a small-scale noise is being

generated around corners of the UJ cubed sphere.

Initially, we calculated metric terms on a grid with

much higher resolution, referring to them as ‘‘analyti-

cal metrics.’’ An example of the corner noise in the

divergence field integrated through all model levels

after the first time step in a test with the zonal flow,

using this ‘‘analytical’’ method is shown in Fig. 5

(top panel).

After replacing analytical with the ‘‘numerical’’

metrics, that is, those calculated on the same grid as the

finite-differencing schemes, the situation immediately

improved, as shown in Fig. 5 (bottom panel), where the

amplitude of corner noise is more than one order of

magnitude smaller. With the increase of resolution,

the amplitude of corner noise gradually decreases, as

suggested by Table 1, which shows extreme values of

the surface pressure and the horizontal divergence

vertically integrated over all levels, respectively, mea-

sured around a corner of the cubed sphere for several

increasing resolutions (104, 52, and 26 km). Perhaps

more importantly, the remaining noise affects signifi-

cantly the same pattern of only a few grid points clus-

tered around each corner at all resolutions, thus the

area affected becomes smaller with the increase of

resolution.

To further minimize the effect of corner noise, we

additionally apply an inflated divergence damping to the

areas around corners:

k5 k
1
2k

2
cosx0 cosy0 , (70)

where x0 and y0 are diagonal directions of the cube’s face,
normalized so that they range from [2p, p]. Coefficients

k1 and k2 are chosen so that minimum damping occurs in

the center of the cube andmaximum at the corners. This

small-scale noise represents a local effect of so-called

grid imprinting, that is, an impact of the grid used for

discretization on the solution.

6. Test integrations

The model was tested in a series of integrations within

the HIWPP project. We here first illustrate model effi-

ciency, and then show two examples of model perfor-

mance in the idealized tests integrations, and one test

case with full physics.

a. Efficiency

In the preliminary tests of model dynamics with the

baroclinic test case of Jablonowski andWilliamson (2006),

the dynamical core of the NMMB-UJ was tested against

TABLE 1. Extreme values of surface pressure (hPa) and vertically integrated horizontal divergence (s21) around a corner of the

cubed sphere.

psmax
psmin

Dps Divmax Divmin DDiv

104 km 100 004.02 99 996.02 8 0.033 483 1 20.033 395 7 0.066 878 8

52 km 100 002.02 99 998.02 4 0.033 149 7 20.033 198 3 0.066 348

26 km 100 001.02 99 999.02 2 0.033 266 2 20.032 944 1 0.066 210 3

FIG. 5. False generation of vertically integrated divergence

around a corner of the cubed sphere after a single time step in

a pure rotational flow. (top) Analytical and (bottom) numerical

formulation of metrics.
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the original version of the model on the geographical grid.

In a 20-day integration on 243 243 65 3456 message

passing interface (MPI) processes, using a horizontal res-

olution of 13km and 128 vertical levels, and with a time

step of 25 s, the cubed-sphere version was 22.57% more

efficient than the geographical grid version with polar fil-

tering. Integration of the model on the geographical grid

took 4h, 48min, and 27 s,while integration of themodel on

the cubed sphere took 3 h, 43min, and 20 s. This ad-

vantage is expected to become only more pronounced

with further increase of resolution and in integrations

on larger numbers of processors, because the version

on the geographical grid would spend proportionally

more time on communication due to the global nature

of polar filtering. At the same time, the version running

on the cubed sphere would spend proportionally con-

siderably less time on communications. For example,

in a test integration at 104 km and 96 MPI processes,

NMMB-UJ spent 31% of computing time on commu-

nication. When resolution was increased to 3 km and

the number of MPI processes to 3456, the relative

amount of time for communications dropped to only

8.7%.

Five different global nonhydrostatic gridpoint models

participated in test runs of an idealized baroclinic de-

velopment case used in evaluations of candidate dy-

namic cores for the National Weather Service’s Next

Generation Global Prediction System (NGGPS): the

Nonhydrostatic Icosahedral Model (NIM) from the

NOAA/ESRL, the Model for Prediction Across Scales

(MPAS) from NCAR, NEPTUNE from the U.S. Naval

Research Laboratory (NRL), FV3 fromNOAA/GFDL,

and our model, that was referred to as ‘‘the uniform-

Jacobian version of the Nonhydrostatic Multiscale

Model (NMM-UJ) from NOAA/NCEP.’’ The ECMWF’s

Integrated Forecast System (IFS) was a sixth participant

that was included to provide contrast as a spectral (al-

though only hydrostatic) model. Figure 6 from a report

by the NGGPS Advanced Computing Evaluation

Committee (Michalakes et al. 2015) shows the scaling

results of two rounds of runs made of 30-min forecasts

with 3-km gridpoint spacing (or its equivalent for IFS)

and with 127 or 128 vertical levels (IFS used 137 levels).

Forecasts were executed on the Department of Energy’s

Edison computer at the National Energy Research Sci-

entific Computing in Berkeley, California. Edison is a

Cray XC30, with a peak performance of 2.57 petaflops,

133 824 compute cores, 357 terabytes of memory, and

7.56 petabytes of disk. More details about its perfor-

mance may be found on its website (http://www.nersc.

gov/users/computational-systems/edison/). The same

forecast was run on processor counts ranging from sev-

eral thousand to roughly 100 000. The second round was

carried out after model developers made various mod-

ifications to their systems following round one. Figure 6

shows that the NMMB-UJ had significantly faster run

times on the various processor counts compared to the

other nonhydrostatic gridpoint models. An early version

of the NMMB-UJ dynamic core was used in these tests.

Instead of the monotonization and mass restoration

FIG. 6. Scalability of the suite of models in a 3-km test run according to the NGGPS report.

Picture shows elapsed time for 30-min simulation using a log–log scale. Lower is better.

[Courtesy of Michalakes et al. (2015).]
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algorithms described in section 4e a simpler version

currently in use in the original NMMBwas in place. Also

the second-order version of all horizontal advections

schemes was applied.

b. Baroclinic wave

A baroclinic instability test case was suggested in

Jablonowski and Williamson (2006). It consists of un-

stable zonal flow in which a small initial perturbation is

applied in the Northern Hemisphere. Precise values of

parameters that control this test are taken from Ullrich

et al. (2012). We show here tests run at several in-

creasing horizontal resolutions, low (104 km), medium

(52 km), and high (26km), respectively, all with 128

levels. In principle, the horizontal resolution needs to be

matched by an appropriately adjusted vertical, as sum-

marized in Iga et al. (2007), but that was not followed in

this idealized HIWPP test. The unstable growth is well

pronounced at days 8, 9, and 10, as evident from Fig. 7,

which shows evolution of surface pressure in the high-

resolution test.

Comparing outputs of runs at different resolutions

reveals a decent convergence for most of the fields. As

an example, we show in Fig. 8 temperature fields at level

100, closest to 850 hPa, at day 9 in tests at all three

resolutions.

The difference between runs at different resolutions is

best seen in the relative vorticity fields, shown in Fig. 9.

Analysis of the model performance at still higher reso-

lutions is presented inWhitaker (2015).With the increase

of resolution, our model shows more details of the oc-

clusion, which was absent from the outputs of other

models. We speculate that these stripes could be attrib-

uted to the capability of our model to correctly describe

nonlinear energy cascade, through the Arakawa (1972)

principle of integral conservation of kinetic energy and

enstrophy, as well as to our constraints on conversion

between the kinetic and other forms of energy.

Dry mass, defined as a hydrostatic pressure difference

between the top of the model’s atmosphere and the

surface, is perfectly conserved in this test with variations

around 1025 of a percent. Total energy is defined as a

sum of kinetic, (u~u1 y~y1w2)mG/2; thermal, cpTmGh;

and potential energy, gzmGh. Evolution of total and

kinetic energies normalized by initial values are shown

in Fig. 10. Though not visible from the picture, total

energy steadily increases by several hundredths of a

percent during the first 10 days of integration, which is

within the range that could be expected from most

models. An increase of kinetic energy in the unstable

baroclinic wave development is expected, and is com-

pensated in the overall energy budget by the imposed

conservation constraints.

The baroclinic wave test case also revealed a large-

scale effect of grid imprinting, that is, a grid-biased

balanced solution that on the cubed sphere is less natural

than on the longitude–latitude grid (e.g., Janjić and

Vasic 2015). Figure 11 shows surface pressure in the

Southern Hemisphere in the baroclinic test case after

17 days of integration at the low resolution, which

clearly reveals the effect of the cubed-sphere geometry

on the solution. Similar patterns were present in outputs

of all other models that used quasi-uniform grids within

the HIWPP project, but not in the output of the NMMB

running on the geographical grid.

c. Supercell thunderstorm

The second idealized test is a supercell thunderstorm

on a reduced-radius sphere without rotation, with pa-

rameters as described in, for example, Klemp et al.

(2015).

This test starts from conditionally unstable initial

conditions, characterized by a large value of convective

available potential energy (CAPE) and a strong low-

level wind shear, which is critical for the creation of

supercell activity. For this test case the model used a

FIG. 7. Evolution of surface level pressure ps in the baroclinic wave test case at horizontal resolution of 26 km.
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simple warm-rain Kessler-type microphysics (Kessler

1969), necessary for explicit treatment of moist con-

vection. A coefficient of linear horizontal and vertical

diffusion is prescribed in order to provide correct con-

vergence of the solution across different scales.

In our case, the initial conditions were inherited

from the global NMMB on the geographical grid and

then interpolated to the cubed sphere, which pro-

duced an initial background noise that compounded

with the effects of grid imprinting, and required

somewhat larger initial divergence damping to keep it

under control.

Four tests were run at increasing resolutions of 4, 2,

1, and 0.5 km on the reduced sphere. Figure 12 shows

the vertical winds at the level closest to 2.5 km after

90min, which closely corresponds to figures shown in

the HIWPP report of Whitaker (2015). For brevity,

only tests run at 18 and 0.58 are presented. Figure 13

shows diagnostics of maximum wind and total rain in

tests at all resolutions. The position and magnitude of

the derived vertical wind field generally agree with

those of other groups, with admittedly somewhat

slower separation and rotation of the convective

cells, which is the result of inflated divergence

damping and appears to be completely unrelated to

the treatment of nonhydrostatic effects.

d. 3-km test run with full physics

Within the HIWPP project another test was that

which included the Moore tornado case of 20 May 2013

(e.g., Atkins et al. 2014). The forecast was run to 72h

with gridpoint spacing of 3 km. The physics used by the

NMMB-UJ was taken from the global NMMB on the

geographic grid. The main features of both physics are

summarized in Table 2.

The initial time of the forecast was 0000 UTC

18 May 2013. A fundamental question is whether the

forecast could produce any indication of the squall

line near the end of the forecast period when it actu-

ally occurred in nature. The tornado itself touched

down at 1956 UTC 20 May and was on the ground for

39min. The top panel of Fig. 14 shows the observed

radar reflectivity at 2100 UTC 20 May less than an

hour after the storm hit. The bottom panel depicts

FIG. 8. Temperature field at level 100 after 9 days in the baroclinic wave test case at three different resolutions: (from

left to right) 104, 52, and 26 km.

FIG. 9. Relative vorticity at level 100 after 9 days in the baroclinic wave test case at three different resolutions: (from

left to right) 104, 52, and 26 km.
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the NMMB-UJ forecast for cloud condensate at

2200 UTC in a model layer near the middle of the

atmosphere. The forecast cloud field indicates that a

line did develop very near the proper location 70 h

into the forecast, or about 1 h later than observed. This

shows that in this case the NMMB-UJ with this physics

package was able to predict at least certain aspects of a

significant severe weather event with considerable

accuracy.

7. Conclusions

In this paper we describe transfer of the NMMB, a

second-order, finite-differencing global model of the

atmosphere based on strict enforcement of mimetic

properties, to a novel UJ cubed-sphere grid geometry.

The UJ cubed sphere exploits assumptions of uniform

Jacobians, minimizing the difference between the

smallest and longest grid distance, and perfectly pre-

serving smoothness of the coordinate lines. For

brevity, we here show only results of two idealized test

cases proposed within HIWPP (i.e., the unstable bar-

oclinic wave and supercell thunderstorm test cases).

The results of nonhydrostatic orographic mountain

waves test cases will be shown elsewhere. In general, we

were able to reconstruct the idealized test solutions pro-

posed by HIWPP and to produce a high-resolution

forecast with full physics coinciding with a significant

weather event while demonstrating excellent computa-

tional performance.

To fully understand why the computational perfor-

mance of NMMB-UJ was better than that of other

participating models would require an in depth analysis,

which is outside the scope of this paper. We speculate

that the model design and chosen numerical grid both

helped in that respect:

d The NMMBmodel is a straightforward second-order

model, and with the exception of the new monoton-

ization filter that was added at a later stage, the

model almost completely eliminates global interpro-

cessor communications, which explains its good

scaling.
d NMMB has a unique, extremely efficient treatment of

nonhydrostatic effects, which allows it to solve two

fewer prognostic equations than other models.
d Vertical advections are solved in an efficient

implicit way.
d Topology of the cubed sphere is convenient for

parallelization.
d UJ mesh allows use of a sufficiently large time step.

The UJ cubed sphere with its smoothness and homo-

geneity offers an excellent computational paradigm.

However, we found that just as with other spherical

polyhedral grids the main issue of concern is grid

imprinting.

The local manifestation of that problem is the gen-

eration of small scale noise around corners of the UJ

cubed sphere, which is presumably a consequence of

the increased curvature of the coordinate lines. Per-

haps it could be explained by a local loss of numerical

accuracy (e.g., Peixoto and Barros 2013). In this pa-

per, we deal with the corner noise using a locally in-

flated divergence damping. In addition, we have found

that when the formulation of grid metrics is done

FIG. 10. Evolution of total and kinetic energy in the baroclinic wave

test case.

FIG. 11. Surface level pressure on Southern Hemisphere in

the baroclinic instability test case at 104 km after 17 days of

integration.
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consistently with model discretization, the noise ob-

served during the first time step in the baroclinic wave

test case quickly disappears. The most seriously af-

fected was the idealized test on the reduced sphere,

where the divergent portion of the flow is dominant

over planetary scales, a situation that the underlying

philosophy of our model is not well suited to deal with.

We are still looking for a more effective remedy of the

corner noise on the UJ cubed sphere, and the results

will be discussed elsewhere. Still, as one can expect,

this issue becomes less significant with the increase of

horizontal resolution, and while running the model at

3 km with full physics the corner noise had no visible

effect over the first 72 h of integration that we were

performing.

Another manifestation of the grid imprinting is a

grid bias observed at large scales of the balanced so-

lution, revealed in the long-term integrations without

physical forcing, which could be ascribed to the sta-

tionary geostrophic modes according to Weller

et al. (2012).

It is possible that models using finite-volume

methods (e.g., Lin 2004; Li et al. 2013; Smolarkiewicz

et al. 2014), because of their inherent application of

monotonization limiters, or those based on spectral

elements (e.g., Wang et al. 2007; Evans et al. 2013;

Giraldo et al. 2013), including discontinuous Galerkin

methods (e.g., Bao et al. 2015), because of their ability

to locally increase accuracy, are better equipped to

deal with the noise around singular points on quasi-

uniform grids. However, all models that participated

in HIWPP, with the exception of NMMB on the

longitude–latitude grid, showed signs of grid im-

printing on the large scales in the long-term in-

tegrations (Whitaker 2015; Janjić and Vasic 2015).

Thus, one should be vigilant in climate simulations

FIG. 12. Vertical wind in the idealized supercell thunderstorm test case at resolutions of (left) 1 km and (right) 0.5 km

after 90min of integration at level 35 closest to 2.5 km.

FIG. 13. Diagnostics in the idealized supercell thunderstorm test

cases: (top) maximum vertical winds and (bottom) total rain.
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with such models since physics alone may not be suf-

ficient to prevent spurious forcing (even if only at

relatively low amplitudes) of patterns locked in phase

with the grid.

The Janjić unique method for treatment of non-

hydrostatic effects is often misunderstood because it

avoids solving two prognostic equations, for the ver-

tical wind and the pressure. Actually, in the frame-

work of approach postulated by Laprise (1992), the

hydrostatic mass m is analogous to density in the

system with geometrical height as the vertical co-

ordinate. Solving prognostic equations for hydrostatic

mass m and temperature T eliminates the need to

solve the prognostic equation for pressure. The only

slight glitch that we were able to find with this ap-

proach is that all variables on the right-hand side of

the hydrostatic relation (28) are not defined at the

same time level, suggesting that further analysis may

be beneficial. Nevertheless, Janjić et al. (2001) found a

method that efficiently and correctly adds the non-

hydrostatic effects to a preexisting hydrostatic

framework.

In some future updates, additional conservation

constraints could be added to the vertical discretiza-

tion (e.g., Juang 2011), and the model may benefit

from an increased order of accuracy in the vertical

direction (e.g., Ullrich and Guerra 2015). Finally, an

approximately regular version of double-sided (‘‘di-

hedron’’) octagonal grid (Purser and Ran�cić 1997),

may undergo the same Jacobian-homogenization

procedure as the UJ cubic grid. The resulting ‘‘UJ

octagonal grid’’ would also offer an attractive com-

putational paradigm. With singularities removed from

midlatitudes where the baroclinic instabilities domi-

nate, two large uniform domains convenient for

nesting and with potentially more options for paral-

lelization, such a grid would be also of interest for

operations on tens of thousands of processors.

Still, the grid geometry of the cubed sphere

possesses a remarkable symmetry, and the UJ homog-

enization provides good computational efficiency by

enabling use of time step close to that of the equiangular

gnomonic cubed sphere but with a smooth transition

across the edges, making this approach very attractive

for numerical modeling of geophysical fluids.

Acknowledgments. The described research was ac-

complished within the High Impact Weather Prediction

Project (HIWPP) Non-Hydrostatic (7000P) program,

funded by Hurricane Sandy Disaster Relief Supple-

mental Appropriations Act of 2013 (P.L. 113-2).

Many elements of the algorithmic and computing

infrastructure were developed within two National

Science Foundation grants (ATM-0739518 and

ATM-0113037). We would also like to express our

gratitude to Drs. Hilary Weller, Lucas Harris, and

two other unknown reviewers of our paper for their

helpful and constructive comments. Special thanks to

the NOAA’s Senior Adviser for AdvancedModeling,

Dr. Hendrik Tolman; the Director of EMC, Dr. Mike

Farrar; and the Chief of EMC’s Mesoscale Modeling

Branch, Dr. Geoff DiMego, for their continuous

support.

APPENDIX

Conservation of Mass and Kinetic Energy

Since the corners represent singular points prone

to violating conservation properties of the numeri-

cal schemes, we will here explain how the conser-

vation of mass and kinetic energy is accomplished

in the NMMB on the UJ cubed sphere. This discus-

sion has nothing to do with the observed grid im-

printing, which is prevailingly a consequence of

adjustment terms.

We will first consider conservation of mass by the

finite-differencing continuity equation (43), and to

this end, we use stencils in Figs. A1. Equation (43) has

to be modified at the corner points where geometry

from the rest of the domain breaks. To guarantee

cancellation of all fluxes after global summation, we

can, for example, write the continuity equation at the

corner point in Fig. A1 as

›m

›t
52

1

G
c

�
2

3

1

d
(U

1/2
2V

1/3
1 hV

2/3
(or)2U

2/3
i)

1
1

3

1

d
ffiffiffi
2

p (U 0
2 2U 0

3 2V 0
1)

�
. (A1)

The notation assumes the northwest corner of the

shaded domain that belongs to the cube’s face I in

Fig. A1, with (x, y) and (x0, y0) directions defined with

TABLE 2. Physics used in NMMB-UJ.

Package References

Ferrier–Aligo microphysics Ferrier et al. (2002, 2011),

Aligo et al. (2014)

Noah land surface Ek et al. (2003)

Mellor–Yamada–Janjić turbulence Mellor and Yamada (1974),

Janjić (1990)

Betts–Miller–Janjić convection Betts and Miller (1986),

Janjić (1994)

RRTMG radiation Iacono et al. (2008)
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respect to that face. The normal flux in the angle

bracket could be referred to as either U2/3 or V2/3,

depending on if we assume that it belongs to the face II

or to the face III. Here Gc denotes the Jacobian at the

corner point, which on the UJ cubed sphere we define

as 3/4G. A good way to generalize such a clumsy cor-

ner notation, is to introduce a ‘‘ghost space’’

(Fig. A1b) and assume that the ghost wind is equal to

zero, that is, vG 5 0. Such an approach returns order

into the finite-differencing world, but now the normal

fluxes V2/3 and 2U2/3 are replaced by their ‘‘partial’’

versions, Vp
2/3 and 2Up

2/3, where the sum of partial

fluxes gives the real flux, that is,

U
2/3

5
1

4
(~u

3
2 ~y

2
)(h

0
1 h

2/3
),

V
2/3

5
1

4
(~y

2
2 ~u

3
)(h

0
1 h

2/3
) . (A2)

FIG. 14. (top)Radar reflectivity at 2100UTC20May 2013 overMoore,OK. (bottom)Forecast of

cloud condensate at model level 25 out of 58 levels, after 70 h of forecast for 2200 UTC.
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Up
2/3 5

1

4
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3
1 ~u

G
)(h

0
1h

2/3
),

Vp
2/3 5

1

4
(~y

2
1 ~y

G
)(h

0
1 h

2/3
) , (A3)

and, therefore,

Vp
2/3 2Up

2/3 5V
2/3

52U
2/3

. (A4)

Now the continuity equation (43) is applicable at the

corners, or, written explicitly,

›m

›t
52

1

G
c

�
2

3

1

d
(U

1/2
2Up

2/3 1Vp
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ffiffiffi
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3 1V 0
G 2V 0
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�
, (A5)

but we should bear in mind when calculating close to the

corners, that the fluxes along boundaries between two

other faces are only partial proxies, not the real,

full fluxes.

The concept of partial fluxes is also used to provide

the correct transformation between available potential

and kinetic energy in (50) and to ensure the conservation

of scalars in (69) during horizontal advection. In the

latter case, for example, (69) is multiplied by Gm and

combined with the continuity equation (43). After ap-

plying the following rule:

Ad
s
cs 5 d

s
(cAs)2 cd

s
A , (A6)

we get the following expression for the mass of scalar c:

(›Gmc)

›t
52

2

3
[d

x
(cUx)1 d

y
(cVy)]

2
1

3
[d

x0(cU
0x0)1 d

y0(cV
0y0)] . (A7)

Using consistently ghost space zeros for the definition

of ghost space diagonal and partial normal fluxes

will provide cancellation of all terms in a global

summation.

To get the tendency of kinetic energy, we multiply

(53) by hGxyV, and apply the finite-differencing

rule:

uAd
s
u
s
5 d

s

�
A
1

2
fuus

�
2

u2

2
d
s
A , (A8)

where fuus
denotes the product of two neighboring

values of a variable u arranged along the coordinate s.

The resulting expression reads as follows:
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Terms in the second row in the first two square

brackets of (A9) are written in flux form and should

not contribute to the generation of kinetic energy

after global summation, because they will all cancel

among themselves. However, two important obser-

vations should be made. First, the mass fluxes U and

FIG. A1. Stencils to aid explanation of mass conservation strat-

egy. (a) Physical space around a corner point. (b) Computational

interpretation of this physical space.
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V in this equation cannot involve partial, but only full

fluxes U and V. Second, the flux of kinetic energy going

directly onto the corner (flux V 0(1/2)fvvy0 in Fig. A1) will

cancel regardless of the definition of flux V 0, because one
of the winds in the product is the zero-wind from the

‘‘ghost’’ space. That gives us some space for maneuvering

as will become clear below.

The first term on the right-hand side of (A9) should

cancel the last term in the square bracket in order to pre-

vent spurious generation of kinetic energy. That is indeed

satisfied everywhere in the domain, with the exception of

wind points in the corners of the cube’s faces (point v1 on

Fig. A1), because the first term includes the continuity

equation applied at the corners, which involves ‘‘partial’’

fluxes, and the last term ismade exclusively from full fluxes.

One way to provide cancellation of these two terms is

through definition of the diagonal flux V 0
G, which is in-

cluded in definition of flux V 0 through averaging in (55).

By recalling that the continuity equation uses partial

fluxes and assumes that the diagonal flux in the ghost

space is zero, we get the following relation for the defi-

nition of diagonal ghost flux in the momentum equation:

2

3

1

d
(2Up

2/3 1Vp
2/3)5

2

3

1

d
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1

d
ffiffiffi
2

p V 0
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By taking into account (A4) we get

V 0
G 5 2

ffiffiffi
2

p
U

2/3
522

ffiffiffi
2

p
V

2/3
. (A11)

Conservation of the secondmoment of scalar c can be

verified if (A7) is multiplied once again byc, and then by

applying the rule (A8), with u replaced by c. The rules in

(A6), (A8), and a series of similar convenient formulas

for manipulations of finite differences are collected in

Gavrilov et al. (2014).

We shouldmention thatmomentum is not conserved by

the pressure gradient force at the corners. Also, we do not

use a curvilinear analogy of the Janjić (1984) nonlinear

momentum advection scheme that, by conserving the

C-grid version of enstrophy on the semistaggered grid, could

further improve the simulation of the nonlinear energy

cascade. Implementation of that scheme in the framework

of quasi-uniform grids still remains to be accomplished.
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Gavrilov, B., I. To�sić, and M. Ran�cić, 2014: Numerical Methods in

Meteorology: Solved Problems. Lap Lambert Academic Pub-

lishing, 172 pp.

Giraldo, F., J. Kelly, and E. Constantinescu, 2013: Implicit-explicit

formulations of a three-dimensional nonhydrostatic unified

model of the atmosphere (NUMA). SIAM J. Sci. Comput., 35,

B1162–B1194, doi:10.1137/120876034.

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A.

Clough, and W. D. Collins, 2008: Radiative forcing by long-

lived greenhouse gases: Calculations with the AER radiative

transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/

2008JD009944.

Iga, S., H. Tomita, M. Satoh, and K. Goto, 2007: Mountain-

wave-like spurious waves associated with similated cold

fronts due to inconsistencies between horizontal and ver-

tical resolutions. Mon. Wea. Rev., 135, 2629–2641,

doi:10.1175/MWR3423.1.

MARCH 2017 RAN �C I �C ET AL . 1103

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:12 PM UTC

https://ams.confex.com/ams/94Annual/webprogram/Paper238154.html
https://ams.confex.com/ams/94Annual/webprogram/Paper238154.html
http://dx.doi.org/10.1016/0021-9991(66)90015-5
http://dx.doi.org/10.1175/BAMS-D-14-00033.1
http://dx.doi.org/10.1175/MWR-D-14-00083.1
http://dx.doi.org/10.1002/qj.49711247308
http://dx.doi.org/10.1175/2008MWR2537.1
http://dx.doi.org/10.1175/2008MWR2537.1
http://dx.doi.org/10.1029/2002JD003296
http://dx.doi.org/10.1175/JCLI-D-11-00448.1
http://dx.doi.org/10.1175/JCLI-D-11-00448.1
https://ams.confex.com/ams/91Annual/webprogram/Paper179488.html
https://ams.confex.com/ams/91Annual/webprogram/Paper179488.html
http://dx.doi.org/10.1137/120876034
http://dx.doi.org/10.1029/2008JD009944
http://dx.doi.org/10.1029/2008JD009944
http://dx.doi.org/10.1175/MWR3423.1


Jablonowski, C., and D. Williamson, 2006: A baroclinic instability

test case for atmospheric model dynamic cores.Quart. J. Roy.

Meteor. Soc., 132, 2943–2975, doi:10.1256/qj.06.12.
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